G

When a < -1, both branches are smooth; but when a reaches -1, the right branch acquires a sharp point, called a *cusp*. For a between -1 and 0 the cusp turns into a loop, which becomes larger as a approaches 0. When a = 0, both branches come together and form a circle (see Example 2). For a between 0 and 1, the left branch has a loop, which shrinks to become a cusp when a = 1. For a > 1, the branches become smooth again, and as a increases further, they become less curved. Notice that the curves with a positive are reflections about the y-axis of the corresponding curves with a negative.

These curves are called **conchoids of Nicomedes** after the ancient Greek scholar Nicomedes. He called them conchoids because the shape of their outer branches resembles that of a conch shell or mussel shell.

10.1 Exercises

1–6 □

- (a) Sketch the curve by using the parametric equations to plot points. Indicate with an arrow the direction in which the curve is traced as *t* increases.
- (b) Eliminate the parameter to find a Cartesian equation of the curve.
- 1. x = 2t + 4, y = t 1
- **2.** x = 3 t, y = 2t 3, $-1 \le t \le 4$
- **3.** x = 1 2t, $y = t^2 + 4$, $0 \le t \le 3$
- **4.** $x = t^2$, y = 6 3t
- **5.** $x = \sqrt{t}, y = 1 t$
- **6.** $x = t^2$, $y = t^3$

7–15 🗆

- (a) Eliminate the parameter to find a Cartesian equation of the curve.
- (b) Sketch the curve and indicate with an arrow the direction in which the curve is traced as the parameter increases.

7.
$$x = \sin \theta$$
, $y = \cos \theta$, $0 \le \theta \le \pi$

8.
$$x = 2 \cos \theta$$
, $y = \frac{1}{2} \sin \theta$, $0 \le \theta \le 2\pi$

9.
$$x = \sin^2 \theta$$
, $y = \cos^2 \theta$

10.
$$x = 2 \cos \theta$$
, $y = \sin^2 \theta$

11.
$$x = e^t$$
, $y = e^{-t}$

12.
$$x = \ln t$$
, $y = \sqrt{t}$, $t \ge 1$

13.
$$x = \tan \theta + \sec \theta$$
, $y = \tan \theta - \sec \theta$, $-\pi/2 < \theta < \pi/2$

14.
$$x = \cos t$$
, $y = \cos 2t$

15.
$$x = \cosh t$$
, $y = \sinh t$

16–21 \square Describe the motion of a particle with position (x, y) as t varies in the given interval.

16.)
$$x = 4 - 4t$$
, $y = 2t + 5$, $0 \le t \le 2$

17.
$$x = \cos \pi t$$
, $y = \sin \pi t$, $1 \le t \le 2$

- **18.** $x = 2 + \cos t$, $y = 3 + \sin t$, $0 \le t \le 2\pi$
- **19.** $x = 2 \sin t$, $y = 3 \cos t$, $0 \le t \le 2\pi$
- **20.** $x = \cos^2 t$, $y = \cos t$, $0 \le t \le 4\pi$
- **21.** $x = \tan t$, $y = \cot t$, $\pi/6 \le t \le \pi/3$
- **22.** Match the parametric equations with the graphs labeled I–VI. Give reasons for your choices. (Do not use a graphing device.)
 - (a) $x = t^3 2t$, $y = t^2 t$
 - (b) $x = t^3 1$, $y = 2 t^2$
 - (c) $x = \sin 3t$, $y = \sin 4t$
 - (d) $x = t + \sin 2t$, $y = t + \sin 3t$
 - (e) $x = \sin(t + \sin t)$, $y = \cos(t + \cos t)$
 - (f) $x = \cos t$, $y = \sin(t + \sin 5t)$

- **23–25** \square Graph x and y as functions of t and observe how x and y increase or decrease as t increases. Use these observations to make a rough sketch by hand of the parametric curve. Then use a graphing device to check your sketch.
 - **23.** $x = 3(t^2 3), y = t^3 3t$
 - **24.** $x = \cos t$, $y = \tan^{-1} t$
 - **25.** $x = t^4 1$, $y = t^3 + 1$

and a second of the second of

- **26.** Graph the curves $y = x^5$ and $x = y(y 1)^2$ and find their points of intersection correct to one decimal place.
- **27.** Graph the curve $x = y 3y^3 + y^5$.
 - 28. (a) Show that the parametric equations

$$x = x_1 + (x_2 - x_1)t$$
 $y = y_1 + (y_2 - y_1)t$

where $0 \le t \le 1$, describe the line segment that joins the points $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$.

- (b) Find parametric equations to represent the line segment from (-2, 7) to (3, -1).
- **29.** Find parametric equations for the path of a particle that moves along the circle $x^2 + (y 1)^2 = 4$ in the following manner:
 - (a) Once around clockwise, starting at (2, 1)
 - (b) Three times around counterclockwise, starting at (2, 1)
 - (c) Halfway around counterclockwise, starting at (0, 3)
- 30. Graph the semicircle traced by the particle in Exercise 29(c).
- **31.** (a) Find parametric equations for the ellipse $x^2/a^2 + y^2/b^2 = 1$. [*Hint*: Modify the equations of a circle in Example 2.]
 - (b) Use these parametric equations to graph the ellipse when a = 3 and b = 1, 2, 4, and 8.
 - (c) How does the shape of the ellipse change as b varies?
 - **32.** Find three different sets of parametric equations to represent the curve $y = x^3$, $x \in \mathbb{R}$.
 - **33.** Derive Equations 1 for the case $\pi/2 < \theta < \pi$.
 - **34.** Let P be a point at a distance d from the center of a circle of radius r. The curve traced out by P as the circle rolls along a straight line is called a **trochoid**. (Think of the motion of a point on a spoke of a bicycle wheel.) The cycloid is the special case of a trochoid with d = r. Using the same parameter θ as for the cycloid and assuming the line is the x-axis and $\theta = 0$ when P is at one of its lowest points, show that the parametric equations of the trochoid are

$$x = r\theta - d\sin\theta$$
 $y = r - d\cos\theta$

Sketch the trochoid for the cases d < r and d > r.

35. If a and b are fixed numbers, find parametric equations for the set of all points P determined as shown in the figure, using the angle θ as the parameter. Then eliminate the parameter and identify the curve.

